
Duinte	J D	C.	shings Codes DDC A0201				
Printed Page:-			ubject Code:- BBCA0201 oll. No:				
N	OID	□ A INSTITUTE OF ENGINEERING AN	D_TECHNOLOGY. GREATER NOIDA				
1	(012)	(An Autonomous Institute Affili					
BCA							
SEM: II - THEORY EXAMINATION (20 20)							
Time	e: 3 H	Subject: Data Structure	es Using Python Max. Marks: 100				
		tructions:	Max. Marks. 100				
			er with the correct course, code, branch etc.				
		stion paper comprises of three Sections					
		MCQ's) & Subjective type questions.					
		n marks for each question are indicated o	•				
		your answers with neat sketches wherever Suitable data if necessary.	er necessary.				
		ly, write the answers in sequential order.					
		should be left blank. Any written materia	l after a blank sheet will not be				
		hecked.					
SECTION-A			20				
1. Atte	empt a	all parts:-					
1-a.	W	Which data structure uses key-value pairs?	? (K1)[CO1] 1				
	(a)	List					
	(b)	Set					
	(c)	Tuple					
	(d)	Dictionary					
1-b.	W	What does $\Theta(n)$ represent in asymptotic no	otation? (K2)[CO1]				
	(a)	Upper bound					
	(b)	Tight bound					
	(c)	Lower bound					
	(d)	Average bound					
1-c.	Se	elect the correct data structure for express	sion evaluation. (K1)[CO2]				
	(a)	Stack					
	(b)	Queue					
	(c)	List					
	(d)	Tuple					
1-d.	Fi	ind the maximum number of moves in To	ower of Hanoi for n disks. (K2)[CO2]				
	(a)	n					
	(b)	2n					

	(c)	2^n - 1				
	(d)	n!				
1-e.	Id	lentify the linked list type suitable for navigating both directions. (K1)[CO3]	1			
	(a)	Singly linked list				
	(b)	Circular list				
	(c)	Doubly linked list				
	(d)	Simple array				
1-f.	S	elect the property of a node in a singly linked list. (K1)[CO3]	1			
	(a)	Index-based access				
	(b)	Data and next pointer				
	(c)	Two data fields				
	(d)	No pointers				
1-g.	Id	Identify the property of an AVL Tree. (K1)[CO4]				
	(a)	Height-balanced tree				
	(b)	Full Binary Tree				
	(c)	Heap Tree				
	(d)	Balanced BST				
1-h.	S	elect the best-suited data structure for implementing a priority queue. (K3)[CO4]	1			
	(a)	BST				
	(b)	Heap				
	(c)	AVL Tree				
	(d)	Stack				
1-i.	W	What is the key feature of a weighted graph? (K1)[CO5]				
	(a)	Nodes				
	(b)	Edges with values				
	(c)	Vertex labels				
	(d)	Directionality				
1-j.	W	Thich algorithm is used to find the shortest path in a weighted graph? (K1)[CO5]	1			
	(a)	Dijkstra's algorithm				
	(b)	Kruskal's algorithm				
	(c)	Bellman-Ford algorithm				
	(d)	Depth-first search				
2. Att	-	all parts:-				
2.a.	th	onsider a two dimensional array A[25][20]. Assume 4 words per memory cell, the base address of array A is 500, elements are stored in column-major order and the rest element is A[0][0]. What is the address of A[9][7]? (K3)[CO1]	2			
2.b.	D	escribe underflow condition of stack. (K2)[CO2]	2			
2.c.	L	ist the components stored in each node of a polynomial linked list. (K1)[CO3]	2			

2.d.	Describe self balancing tree. (K1)[CO4]	2	
2.e.	Define a graph. What are its main components? (K1)[CO5]	2	
SECTIO	ON-B	30	
3. Answ	er any <u>five</u> of the following:-		
3-a.	Write a Python program to print the transpose of a given matrix using a function. (K4)[CO1]	6	
3-b.	Explain time complexity and space complexity of an algorithm with suitable examples. (K2)[CO1]	6	
3-c.	Design a basic structure of a priority queue and explain how elements are prioritized. (K5)[CO2]	6	
3-d.	write an algorithm to pop an element in Stack[CO2]		
3.e.	Differentiate between doubly linked list and circular linked list. (K3)[CO3]	6	
3.f.	Create a B-Tree of order 3 from the following keys: 40, 20, 60, 10, 30, 50, 70, 5, 15, 25, 35, 45, 55, 65, 75, 12, 28, 48, 58, 68. (K6)[CO4]	6	
3.g.	Consider the following directed weighted graph $G = \{V, E\}$. Find the shortest paths between all the vertices of the graphs using the Floyd-Warshall algorithm. (K3)[CO5]	6	
SECTIO	<u>ON-C</u>	50	
4. Answ	er any <u>one</u> of the following:-		
4-a.	Explain linear and non-linear data structures with examples, and applications. (K2)[CO1]	10	
4-b.	Discuss the role of asymptotic notations in algorithm analysis and explain each notation with examples. (K2)[CO1]	10	
5. Answ	er any <u>one</u> of the following:-		
5-a.	convert following sequence to postfix and evaluate: $(10 + 2 * 3) / (4 - 2) + 5 * (2 + 1) - 8 / 4$ [CO2]	10	
5-b.	Construct a python program to print Fibonacci Series using Recursion. (K3)[CO2]	10	
6. Answ	er any <u>one</u> of the following:-		
6-a.	Formulate an algorithm to insert a node at a specific position in a linked list. (K6)[CO3]	10	
6-b.	Explain the following terms related to circular linked list with examples: node,	10	

link, head pointer, tail pointer, last node. (K2)[CO3]

- 7. Answer any one of the following:-
- 7-a. Define AVL tree. What is a balance factor in AVL trees? Explain various rotations 10 performed on AVL trees. (K2)[CO4]
- 7-b. What is a threaded binary tree? Write the advantages of threaded binary tree. 10 (K2)[CO4]
- 8. Answer any one of the following:-
- 8-a. Describe Quick Sort and explain how the choice of pivot affects its performance. 10 Sort the array [10, 7, 8, 9, 1, 5] using Quick Sort with the last element as the pivot. Show all steps. (K3)[CO5]
- 8-b. Using Dijkstra's algorithm, find the shortest path from vertex A to all other vertices. Show the table of distances at each iteration and the final shortest path tree. (K4)[CO5]

